Hukum Hukum Pada Teori Himpunan
Pada kesempatan kali ini yang akan kita coba bagikan kepada teman teman yaitu tentang Dasar-dasar teori tentang teori himpunan, berikut ini sangat penting dalam pembahasan tentang teori grup.
1. Himpunan
Himpunan adalah suatu kumpulan obyek (kongkrit maupun abstrak) yang didefinisikan dengan jelas. Obyek-obyek dalam himpunan tersebut dinamakan anggota himpunan.
Contoh I.1 :
1. Himpunan bilangan 0, 1, 2 dan 3.
2. Himpunan : pena, pensil, buku, penghapus, penggaris.
3. Himpunan : Negara-negara anggota ASEAN.
Secara matematik, himpunan dapat dinyatakan dengan tanda kurung kurawal dan digunakan notasi huruf besar. Hal itu berarti, himpunan di atas ditulis secara matematik yaitu :
1. A = { 0, 1, 2, 3 }.
2. B = { pena, pensil, buku, penghapus, penggaris }.
3. C = { Negara-negara ASEAN }.
Untuk membentuk himpunan, salah satu metode yang dapat digunakan adalah metode Roster (tabelaris) yaitu dengan menyebut atau mendaftar semua anggota, seperti pada himpunan A dan 3
B sedangkan metode lainnya adalah metode Rule yaitu dengan menyebut syarat keanggotaannya. Sebagai contoh, penggunaan metode Rule adalah C = { x | x negara-negara ASEAN }. Kalimat di belakang garis tegak ( | ) menyatakan syarat keanggotaan.
Apabila suatu obyek merupakan anggota dari suatu himpunan maka obyek itu dinamakan elemen dan notasi yang digunakan adalah ∈. Sebaliknya apabila bukan merupakan anggota dinamakan bukan elemen, dan notasi yang digunakan adalah ∉. Sebagai contoh, jika himpunan A = {0, 1, 2, 3 } maka 2 ∈ A sedangkan 4 ∉ A. Banyaknya elemen dari himpunan A dikenal dengan nama bilangan cardinal dan disimbolkan dengan n(A). Berarti pada contoh di atas n(A) = 4.
Himpunan A dikatakan ekuivalen dengan himpunan B jika n(A) = n(B), dan biasa disimbolkan dengan A ∼ B. Berarti jika A dan B ekuivalen maka dapat dibuat perkawanan satusatu dari himpunan A ke himpunan B dan sebaliknya. Pada contoh di atas himpunan A = {0, 1, 2, 3 } ekuivalen dengan himpunan E = {2, 4, 6, 8}.
Catatan :
Pada saat menyatakan himpunan harus diperhatikan bahwa (i) Urutan tidak diperhatikan, himpunan {0, 1, 2, 3}, {1, 0, 3, 2} dipandang sama dengan {1, 2, 3, 0}
(ii) Anggota-anggota yang sama hanya diperhitungkan sekali, {0, 0, 1, 1, 2, 3} dan {0, 1, 2, 3, 3, 3} dipandang sama dengan {0, 1, 2, 3}.
Himpunan semesta (universal set) adalah himpunan semua obyek yang dibicarakan. Himpunan semesta dinotasikan S atau U. Sebagai contoh jika A ={0, 1, 2, 3} maka dapat diambil himpunan semestanya U = { bilangan bulat } atau U = { himpunan bilangan cacah }, dll.
Himpunan kosong adalah himpunan yang tidak mempunyai anggota, dalam hal ini digunakan
notasi ∅ atau { }. Sebagai contoh jika D = { bilangan ganjil yang habis dibagi dua } maka D = ∅ atau D = { }.
Diagram Venn adalah diagram untuk menggambarkan suatu himpunan atau relasi antar himpunan. Himpunan yang digambarkannya biasanya dalam bentuk lingkaran dan anggotanya berupa titik dalam lingkaran dan himpunan semestanya dalam bentuk persegi panjang. Sebagai contoh jika diketahui himpunan E = { 2, 4, 6, 8 } dan himpunan semestanya adalah himpunan bilangan genap U dapat digambarkan dengan diagram Venn.
Misalkan diketahui himpunan A dan B. Himpunan A dikatakan himpunan bagian (subset) jika dan hanya jika setiap elemen dari A merupakan elemen dari B. Notasi yang biasa digunakan adalah A ⊆ B atau B ⊇ A. Notasi A ⊆ B dibaca A himpunan bagian dari B atau A termuat dalam B, sedangkan notasi B ⊇ A dibaca B memuat A.
Contoh I.2 :
Himpunan { 0 } ⊆ { 0, 1, 2, 3 } sedangkan 0 ∈ { 0, 1, 2, 3 }. Dua himpunan dikatakan sama jika dan hanya jika keduanya mengandung elemen yang tepat sama. Hal itu berarti bahwa A = B jika dan hanya jika setiap anggota A juga menjadi anggota B dan sebaliknya setiap anggota B juga menjadi anggota A. Untuk membuktikan A = B maka haruslah dibuktikan bahwa A ⊆ B dan B ⊆ A. Sebagai contoh A = { 0, 1, 2, 3 } sama dengan himpunan B = { 1, 0, 2, 3 }. Perlu dicatat bahwa himpunan kosong merupakan himpunan bagian dari sebarang himpunan sehingga ∅ ⊆ A.
Jika A dan B himpunan maka A dikatakan himpunan bagian sejati (proper subset) B jika dan hanya jika A ⊆ B dan A ≠ B. Notasi yang biasa digunakan adalah A ⊂ B. Sebagai contoh {1, 2, 4 } ⊂ { 1, 2, 3, 4, 5 }.
Himpunan A = { 0, 1, 2, 3 } bukan himpunan bagian himpunan G = {1, 3, 6, 8} atau A ⊄ G karena ada anggota A (misalnya 2) yang bukan anggota G. Dari suatu himpunan A dapat dibuat himpunan kuasa (power set) yaitu himpunan yang anggota-anggotanya adalah himpunan bagian dari himpunan A dan notasi yang digunakan adalah 2A.
Sebagai contoh, himpunan H = { 1, 2 } maka 2A = { ∅, {1}, {2}, {1,2} }. Dalam hal ini n(2A) =2n(A) = 22 = 4.
Dua himpunan A dan B dikatakan saling asing jika masing-masing tidak kosong dan A ∩ B = ∅. Sebagai contoh himpunan A = { 0, 1, 2, 3 } saling asing dengan himpunan E = { 5, 6, 7, 8 }.
Komplemen himpunan A adalah semua anggota dalam semesta yang bukan anggota A. Notasi komplemen A adalah AC. Secara matematik dapat ditulis sebagai AC ={ x | x ∈ U dan x ∉ A }.
Sebagai contoh jika U = { 1, 2, 3,…, 10 } dan A = { 3, 5, 7 } maka AC={1, 2, 4, 6, 8, 9,10}.
Relasi antara himpunan A dan komplemennya yaitu AC dapat dinyatakan dalam diagram Venn. Dalam hal ini UC = ∅ dan ∅C = U. Gabungan (union) dua himpunan A dan B adalah suatu himpunan yang anggotaanggotanya terdiri atas semua anggota dari himpunan A atau B. Notasi yang digunakan
adalah A ∪ B. Secara matematika A ∪ B = { x | x ∈ A atau x ∈ B }.
Sebagai contoh jika A = { a, i, e } dan B = { i, e, o, u } maka A ∪ B = { a, i, e, o, u }. Dalam hal ini berlaku sifat A ⊆ (A ∪ B} dan B ⊆ (A ∪ B} dan juga A ∪ AC = U.
Irisan (intersection) dari dua himpunan A dan B adalah suatu himpunan yang anggotanya terdiri atas anggota himpunan A yang juga merupakan anggota himpunan B. Dalam hal ini digunakan notasi A ∩ B. Secara matematik A ∩ B = { x | x ∈ A dan x ∈ B }.
Sebagai contoh jika A = { 2, 3, 5, 7} dan B ={ 2, 4, 6, 8 } maka A ∩ B ={ 2 }. Dalam operasi irisan berlaku bahwa (A ∩ B) ⊆ A dan (A ∩ B) ⊆ B dan juga A ∩ AC=∅ .
Selisih antara himpunan A dan himpunan B adalah anggota A yang bukan B. Notasi yang digunakan adalah A-B. Secara matematik A-B = { x | x ∈ A dan x ∉ B }.
Sebagai contoh jika A = {0, 1, 2, 3} dan B = { 3, 4, 5 } maka A-B = { 0, 1, 2 }. Diagram Venn untuk selisih dapat digambarkan.
Jumlahan himpunan A dan B adalah himpunan A saja atau himpunan B saja tetapi bukan anggota A dan B. Dalam hal ini digunakan notasi A + B. Secara matematik dapat dinyatakan sebagai A + B = { x | x ∈ (A ∪ B) tetapi x ∉ (A ∩ B) }.
Sebagai contoh jika A = { 1, 2, 3, 4, 5 } dan B ={ 2, 4, 6 } maka A + B = { 1, 3, 5, 6 }. Diagram Venn dari operasi penjumlahan dapat digambarkan. Catatan bahwa : A + B = (A ∪ B) - (A ∩ B) atau A + B = (A - B) ∪ (B - A).
Hukum-hukum aljabar himpunan:
1. Hukum komutatif :
- A ∩ B = B ∩ A
- A ∪ B = B ∪ A
Bukti :
Karena A ∩ B = { x | x ∈ A dan x ∈ B } maka A ∩ B = { x | x ∈ B dan x ∈ A } = B ∩ A.
Karena A ∪ B = { x | x ∈ A atau x ∈ B } maka A ∪ B = { x | x ∈ B atau x ∈ A } = B ∪ A.
2. Hukum assosiatif:
- A ∩ (B ∩ C) = (A ∩ B) ∩ C
- A ∪ (B ∪ C) = (A ∪ B) ∪ C
3. Hukum idempoten:
- A ∩ A = A
- A ∪ A = A
4. Hukum distributif :
- A ∩ (B ∪ C) = (A ∪ B) ∪ (A ∩ C)
- A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
5. Hukum de Morgan :
- (A ∩ B)c = Ac ∪ Bc
- (A ∪ B)c = Ac ∩ Bc
6. Jika A ⊆ B maka A ∩ B = A dan A ∪ B = B.
0 Response to "Hukum Hukum Pada Teori Himpunan"
Post a Comment